Efficient Error detection Architectures for for Low-Energy Block Ciphers with the Case Study of Midori Benchmarked on FPGA

نویسندگان

  • Anita Aghaie
  • Shanchieh Jay Yang
  • Mehran Mozaffari-Kermani
  • Reza Azarderakhsh
چکیده

Achieving secure, high performance implementations for constrained applications such as implantable and wearable medical devices is a priority in efficient block ciphers. However, security of these algorithms is not guaranteed in presence of malicious and natural faults. Recently, a new lightweight block cipher, Midori, has been proposed which optimizes the energy consumption besides having low latency and hardware complexity. This algorithm is proposed in two energy-efficient varients, i.e., Midori64 and Midori128, with block sizes equal to 64 and 128 bits. In this thesis, fault diagnosis schemes for variants of Midori are proposed. To the best of the our knowledge, there has been no fault diagnosis scheme presented in the literature for Midori to date. The fault diagnosis schemes are provided for the nonlinear S-box layer and for the round structures with both 64-bit and 128-bit Midori symmetric key ciphers. The proposed schemes are benchmarked on field-programmable gate array (FPGA) and their error coverage is assessed with fault-injection simulations. These proposed error detection architectures make the implementations of this new low-energy lightweight block cipher more reliable.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Impossible Differential Cryptanalysis of Reduced-Round Midori64 Block Cipher (Extended Version)

Impossible differential attack is a well-known mean to examine robustness of block ciphers. Using impossible differ- ential cryptanalysis, we analyze security of a family of lightweight block ciphers, named Midori, that are designed considering low energy consumption. Midori state size can be either 64 bits for Midori64 or 128 bits for Midori128; however, both vers...

متن کامل

Midori: A Block Cipher for Low Energy (Extended Version)

In the past few years, lightweight cryptography has become a popular research discipline with a number of ciphers and hash functions proposed. The designers’ focus has been predominantly to minimize the hardware area, while other goals such as low latency have been addressed rather recently only. However, the optimization goal of low energy for block cipher design has not been explicitly addres...

متن کامل

Reliable Low-Latency and Low-Complexity Viterbi Architectures Benchmarked on ASIC and FPGA

The Viterbi algorithm is commonly applied in a number of sensitive usage models including decoding convolutional codes used in communications such as satellite communication, cellular relay, and wireless local area networks. Moreover, the algorithm has been applied to automatic speech recognition and storage devices. In this thesis, efficient error detection schemes for architectures based on l...

متن کامل

Concurrent error detection schemes for fault-based side-channel cryptanalysis of symmetric block ciphers

Fault-based side-channel cryptanalysis is very effective against symmetric and asymmetric encryption algorithms. Although straightforward hardware and time redundancy-based concurrent error detection (CED) architectures can be used to thwart such attacks, they entail significant overheads (either area or performance). The authors investigate systematic approaches to low-cost low-latency CED tec...

متن کامل

A new CPA resistant software implementation for symmetric ciphers with smoothed power consumption: SIMON case study

In this paper we propose a new method for applying hiding countermeasure against CPA attacks. This method is for software implementation, based on smoothing power consumption of the device. This method is evaluated on the SIMON scheme as a case study; however, it is not relying on any specific SIMON features. Our new method includes only AND equivalent and XOR equivalent operations since every ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017